Sentiment analysis in Facebook and its application to e-learning
نویسندگان
چکیده
This paper presents a new method for sentiment analysis in Facebook that, starting from messages written by users, supports: (i) to extract information about the users' sentiment polarity (positive, neutral or negative), as transmitted in the messages they write; and (ii) to model the users' usual sentiment polarity and to detect significant emotional changes. We have implemented this method in SentBuk, a Facebook application also presented in this paper. SentBuk retrieves messages written by users in Facebook and classifies them according to their polarity, showing the results to the users through an interactive interface. It also supports emotional change detection, friend's emotion finding, user classification according to their messages, and statistics, among others. The classification method implemented in SentBuk follows a hybrid approach: it combines lexical-based and machine-learning techniques. The results obtained through this approach show that it is feasible to perform sentiment analysis in Facebook with high accuracy (83.27%). In the context of e-learning, it is very useful to have information about the users' sentiments available. On one hand, this information can be used by adaptive e-learning systems to support personalized learning, by considering the user's emotional state when recommending him/her the most suitable activities to be tackled at each time. On the other hand, the students' sentiments towards a course can serve as feedback for teachers, especially in the case of online learning, where face-to-face contact is less frequent. The usefulness of this work in the context of e-learning, both for teachers and for adaptive systems, is described too. The use of computers in education has meant a great contribution for students and teachers. The incorporation of adaptation methods and techniques allows the development of adaptive e-learning systems, where each student receives personalized guidance during the learning process (Brusilovsky, 2001). In order to provide personalization, it is necessary to store information about each student in what is called the student model (Kobsa, 2007). The specific information to be collected and stored depends on the goals of the adaptive e-learning system (e.g., preferences, learning styles, personality, emotional state, context, previous actions , and so on). In particular, affective and emotional factors, among other aspects, seem to affect the student motivation and, in general, the outcome of the learning process (Shen, Wang, & Shen, 2012). Therefore, in learning contexts, being able to detect and manage information about the students' emotions at a certain time can contribute to know their potential …
منابع مشابه
Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...
متن کاملSentiment analysis methods in Sentiment analysis methods in Persian text: A survey
With the explosive growth of social media such as Twitter, reviews on e-commerce website, and comments on news websites, individuals and organizations are increasingly using opinions in these media for their decision making. Sentiment analysis is one of the techniques used to analyze userschr('39') opinions in recent years. Persian language has specific features and thereby requires unique meth...
متن کاملیک چارچوب نیمهنظارتی مبتنی بر لغتنامه وفقی خودساخت جهت تحلیل نظرات فارسی
With the appearance of Web 2.0 and 3.0, users’ contribution to WWW has created a huge amount of valuable expressed opinions. Considering the difficulty or impossibility of manually analyzing such big data, sentiment analysis, as a branch of natural language processing, has been highly considered. Despite the other (popular) languages, a limited number of research studies have been conducted in ...
متن کاملA Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملSentilyzer – A Mashup Application for the Sentiment Analysis of Facebook Pages
We present Sentilyzer, a web-based tool that can be used to analyze and visualize the sentiment of German user comments on Facebook pages. The tool collects comments via the Facebook API and uses the TreeTagger to perform basic lemmatization. The lemmatized data is then analyzed with regard to sentiment by using the Berlin Affective Word List – Reloaded (BAWL-R), a lexicon that contains emotion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers in Human Behavior
دوره 31 شماره
صفحات -
تاریخ انتشار 2014